Actively targeting D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) nanoparticles as vesicles for chemo-photodynamic combination therapy of doxorubicin-resistant breast cancer.

نویسندگان

  • Di Jiang
  • Xiaoling Gao
  • Ting Kang
  • Xingye Feng
  • Jianhui Yao
  • Mengshi Yang
  • Yixian Jing
  • Qianqian Zhu
  • Jingxian Feng
  • Jun Chen
چکیده

Drug resistance is the major reason for therapeutic failure during cancer treatment. Chemo-photodynamic combination therapy has potential to improve the treatment efficiency in drug-resistant cancers, but is limited by the incompatible physical properties of the photosensitizer with a chemo-drug and poor accumulation of both drugs into the inner areas of the tumor. Herein, a novel drug delivery system was designed by incorporating the photosensitizer, chlorine 6, chemically in the shell and the chemo-drug, doxorubicin, physically in the core of D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactic acid) (TPGS-PLA) nanoparticles with a targeting ligand, tLyp-1 peptide, decorated over the surface (tLyp-1-NP). This nanoparticle with a high drug loading capacity of both the photosensitizer and chemo-drug is expected to realize chemo-photodynamic combination therapy of drug-resistant cancer and simultaneously achieve the specific deep penetration and accumulation of drugs into the inner areas of tumor. tLyp-1-NP was prepared via a nanoprecipitation method and it exhibited a uniformly spherical morphology with a size of approximately 130 nm. After appropriate irradiation, tLyp-1-NP showed high cellular uptake and strong cytotoxicity in both human umbilical vein endothelial cells (HUVEC cells) and doxorubicin-resistant human breast adenocarcinoma cells (MCF-7/ADR cells) in vitro. After intravenous administration, compared with the unmodified NPs, tLyp-1-NP was found to have superior tumor targeting ability and more potent reversion of doxorubicin-resistant cancer. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling and the hematoxylin and eosin staining of the treated tumors further demonstrated the anti-tumor efficacy of tLyp-1-NP in the presence of a laser. These observations collectively suggest the potential of tLyp-1-NP for the actively targeting chemo-photodynamic combination therapy of drug-resistant cancer.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overcome the Doxorubicin Resistance by Moltimodal Nanoparticles in Mice

The efficacy of many chemotherapeutic agents is reduced in cells that have developed multiple drug resistance (MDR). To address this important problem, a biodegradable polymer was coupled to the photosensitizer and the resulting photosensitizer-nanoparticles were loaded with the chemotherapeutic agent doxorubicin. The combination of photosensitizer and chemotherapeutic agent had a synergistic a...

متن کامل

DACHPt-Loaded Nanoparticles Self-assembled from Biodegradable Dendritic Copolymer Polyglutamic Acid-b-D-α-Tocopheryl Polyethylene Glycol 1000 Succinate for Multidrug Resistant Lung Cancer Therapy

The clinical applications of platinum-based antitumor agents are still largely limited by severe side effects as well as multidrug resistance (MDR). To solve these problems, we developed an 1,2-diaminocyclohexane-platinum(II) (DACHPt)-loaded nanoparticle (NP-TPGS-Pt) by self-assembly of poly(amidoamine)-polyglutamic acid-b-D-α-tocopheryl polyethylene glycol 1000 succinate (PAM-PGlu-b-TPGS) and ...

متن کامل

Design of vitamin E d-α-Tocopheryl Polyethylene Glycol 1000 Succinate-Emulsified Poly (D,L–Lactide–co-Glycolide) Nanoparticles: Influence of Duration of Ultrasonication Energy

The aim of this research was to investigate the effect of the duration of ultrasonication energy on the physicochemical characteristics of the nano-sized particulate drug delivery systems. For this purpose, meloxicam-loaded vitamin E d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS)-emulsified poly (D,L-lactide-co-glycolide) (PLGA) nanoparticles were designed by using ultrasonication-sol...

متن کامل

Liver-targeting Resibufogenin-loaded poly(lactic-co-glycolic acid)-d-α-tocopheryl polyethylene glycol 1000 succinate nanoparticles for liver cancer therapy

Liver cancer remains a major problem around the world. Resibufogenin (RBG) is a major bioactive compound that was isolated from Chansu (also called toad venom or toad poison), which is a popular traditional Chinese medicine that is obtained from the skin secretions of giant toads. RBG has strong antitumor effects, but its poor aqueous solubility and its cardiotoxicity have limited its clinical ...

متن کامل

Nanoparticles of Poly(Lactide-Co-Glycolide)-d-a-Tocopheryl Polyethylene Glycol 1000 Succinate Random Copolymer for Cancer Treatment

Cancer is the leading cause of death worldwide. Nanomaterials and nanotechnologies could provide potential solutions. In this research, a novel biodegradable poly(lactide-co-glycolide)-d-a-tocopheryl polyethylene glycol 1000 succinate (PLGA-TPGS) random copolymer was synthesized from lactide, glycolide and d-a-tocopheryl polyethylene glycol 1000 succinate (TPGS) by ring-opening polymerization u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nanoscale

دوره 8 5  شماره 

صفحات  -

تاریخ انتشار 2016